
November 2012
Number 29

 1 Know How…
 Try Thor’s Terrifi c Tools, Part 1
 Tamar E. Granor, PhD

 8 Deep Dive
Creating ActiveX Controls
for VFP using .Net, Part 4

 Doug Hennig

 12 VFPX
 IntellisenseX
 Rick Schummer

 19 SQLite
 Vive La Difference –
 How SQLite varies from VFP SQL
 Whil Hentzen

Try Thor’s
Terrifi c
Tools, Part 1
Thor makes developers’ lives easier
with dozens of handy tools.

Tamar E. Granor, Ph.D.

Thor provides dozens of great tools to make devel-
oping in VFP easier. In this series, Tamar takes a
look at her favorites.
One of the things that makes Visual FoxPro such a
great tool for developing software is the open archi-
tecture that makes it easy to create developer tools.
It’s rare to fi nd an experienced VFP developer who
hasn’t written at least one tool to automate some
task in the IDE. Some people have a whole menu
pad’s worth of developer tools (and in fact, being
able to add a menu pad is one example of VFP’s
open architecture).

The VFPX website was created to allow VFP
 developers to share tools, and it now houses quite
a few developer tools (along with a bunch of com-
ponents meant to be used in VFP apps). But it’s not
a great way to share little tools. What’s a little tool?
Something that takes just a few lines of code, perhaps
with no user interaction needed. Something where
creating a whole VFPX project would be overkill.

As the VFPX tool PEM Editor was reaching
maturity, Jim Nelson and Matt Slay, its principal
authors and designers, found that there were lots
of little tools they wanted and they started adding
them to PEM Editor. But many of these little tools
weren’t really relevant to managing properties,

events and methods of forms and classes. PEM
Editor just proved to be a handy way of distributing
them.

Eventually, they realized that what was really
needed was a tool for managing tools, and Thor
was born. Thor is a tool designed to let you manage
developer tools; it comes with a whole set of tools,
but is extensible so you can add your own developer
tools, as well as those you get from others. Thor allows
you to assign hot keys to any installed tool, as well as
to create custom pads on the VFP menu and custom
pop-up menus accessed by hot keys. (For a longer
introduction to Thor, see Rick Schummer’s article in
the July, 2011 issue of FoxRockX. To learn how to add
your own tools to Thor, see Rick’s September, 2011
article.)

Page 2 FoxRockX November 2012

light the entire FOR loop, and a fourth use high-
lights the whole SCAN. In fact, this entire block of
code is inside another IF statement, and a fifth use
of Highlight Control Structure highlights that IF.

Of course, if you have to drill down through
three layers of menus to use this tool, it probably
won’t seem all that handy. However, one of the
features of Thor is that you can assign a keyboard
shortcut to any tool. Before moving on to look at
other tools, let’s see how you can do so.

Putting tools at your fingertips
Thor offers several mechanisms to make using its
tools easier. The simplest is assigning a keystroke
combination to a tool, so you can use it without
navigating the Thor Tools menu. To do so, open
the Thor Configuration form by choosing Thor |
Configure from the menu. Click the Tool Definitions
tab to open the Tool Definitions page, and navigate
in the treeview on the left pane until you find the
tool to which you want to add a hotkey. Figure 4
shows the Tool Definitions page with the Highlight
Control Structure tool selected.

In this short series of articles, I‘ll look at a num-
ber of the tools that come with Thor to show you
why you want to bother changing the way you
work. Since most of the tools operate on code in the
IDE, I’ll need to demonstrate on some programs,
forms and classes. As much as possible, I’ll use
code that comes with VFP, such as classes from the
FFC (FoxPro Foundation Classes).

For each tool, I’ll also show you where it’s
located on the Thor Tools menu.

Highlight Control Structure
Menu: Code | Control Structures | Highlight Control
Structure
I work a lot with other people’s code, that is, code
originally written by another developer. Some-
times, even beautifying the code isn’t enough to
help me grasp its structure. Thor’s Highlight Con-
trol Structure tool is handy when I’m looking at a
particular code block and trying to understand it.
It highlights the entire structure where the cursor
is found, whether it’s IF-ENDIF, FOR-ENDFOR,
DO CASE, SCAN-ENDSCAN, DO WHILE, TEXT-
ENDTEXT or TRY-CATCH. If you run the tool a
second time, it highlights the structure containing
the one you already highlighted. Subsequent uses
continue to work their way outward.

For example, Figure 1 shows a block of code
from VFPXTAB.PRG. The cursor is positioned on
an assignment statement that’s inside an IF block
(between “ISNULL” and its open parenthesis).
The IF block is inside a CASE statement, which is
contained in a FOR loop. The FOR loop is inside a
SCAN loop.

Figure 2 shows the result of using Highlight
Control Structure, while Figure 3 shows the code
after the second application of Highlight Control
Structure. Using the tool a third time would high-

Figure 1. This block of code, drawn from VFPXTAB.PRG, has
an IF inside a CASE, inside a FOR loop, inside a SCAN loop.

Figure 2. Using Highlight Control Structure on the code in
Figure 1. This block of code, drawn from VFPXTAB.PRG,
has an IF inside a CASE, inside a FOR loop, inside a SCAN
loop. Highlights just the IF statement where the cursor was
positioned.

Figure 3. The second use of Highlight Control Structure
highlights the entire CASE statement.

November 2012 FoxRockX Page 3

ing submenus to the existing pads or adding
tools directly to existing pads. So if you like
using the menu, but fi nd that the tools you
want to use are buried too deeply in the Thor
Tools menu, you can put them where you
want them.

In addition, you can create pop-up
menus that appear when a specifi ed key
combination is pressed. These are like right-
click menus, except that they’re triggered by
the key combination you specify. These pop-
up menus can include whichever tools you
choose, and can have submenus, if you wish.

To modify the VFP system menu or to
create a pop-up menu, use the Menu Defi ni-
tions page of the Thor Confi guration form.
Figure 7 shows that page after clicking the
Add Menu button with the Popup Menus

item highlighted. To defi ne the pop-up menu,
specify the prompt (which appears only in the Thor
Confi guration form) and a hotkey for the pop-up.
Then, use the Add Tool button to add one or more
tools to the pop-up menu.

In Figure 8, the new pop-up menu has been
defi ned and Thor’s two tools that deal with control
structures added. Figure 9 shows the newly defi ned
pop-up over a code window.

The ability to add hot keys, to modify the VFP
system menu, and to defi ne pop-up menus makes
it easy for you to decide which Thor tools you’re
likely to use and then make those easily accessible.

Edit Parent and Containing
Classes
Menu: Parent Classes | Edit Parent and Containing
Classes
This tool may well be the one most likely to get
people to use Thor. One of VFP’s weaknesses is
that when you’re editing a form or class, you can-

Click the ellipsis button (indicated in the
fi gure) and then, as the message that appears
(Figure 5) says, press the keyboard combina-
tion you want to use. Once you do so, the
message disappears, and the textbox shows
the specifi ed hotkey. In Figure 6, you can see
that I’ve specifi ed Shift+Ctrl+C as the hot key
for Highlight Control Structure (described in
the next section of this article).

The key combination you specify doesn’t
take effect until you either close the Thor
Confi guration form or click the Thor button
at the top right of the form to refresh menus
and hot keys.

The Thor Confi guration form offers a
couple of other ways to make individual
tools more accessible. You can modify the
VFP system menu, adding entire pads, add-

Figu re 4. The Tool Defi nitions page of the Thor Confi guration form lets you
specify a keyboard combination to run a tool.

Figur e 5. After you click the ellipsis button for a hot key,
this message appears. Do as it says to specify a hot key.

Figure 6. Once you type the desired key combination, it
appears in the hot key textbox.

Figure 7. On the Menu Defi nitions page of the Thor Confi guration form, you
can add items to the VFP system menu, and create your own pop-up menus.

Page 4 FoxRockX November 2012

not open any class in the inheritance
hierarchy of any member of the class
being edited. For example, if you’re
working on a listbox on a form, and
you realize that you need to change
some code or a setting in the class
the listbox is based on, you have to
close the form and then open the list-
box class. When you’re done making
changes, you have to close the listbox
class and reopen the form.

While Thor can’t change that
rule, it can make dealing with it eas-
ier. That’s what this tool is about. It
opens a form showing the classes in
the selected object’s heritage, and al-
lows you to open any of them (after
closing the current class or form).
When you do so, the form stays open
to allow you to easily get to other list-
ed classes; it also contains a button to reopen the
form or class you were originally editing.

For example, the Object Inspector that I built is
based on a set of classes that Doug Hennig published.
The main form, shown in Figure 10, includes a
container class called sfTreeviewExplorer that
incorporates a treeview and several other controls.
When I run the Edit Parent and Containing Classes tool
with that object selected, the form shown in Figure 11
opens. It shows that the control is included in a Form
class called sfExplorerFormTreeview and that the
control is based on class sfTreeviewExplorer, which

inherits from sfTreeviewCursor, which
inherits from sfTreeviewContainer,
which inherits from sfContainer.

The form doesn’t actually
indicate which classes are in the
inheritance hierarchy and which are
in the containership hierarchy. Both
are included with the containership
hierarchy shown fi rst. Figure 12 shows
another example from the same form.
Before opening the tool this time,
the timer control inside the treeview
container was selected. The form
shows that the timer is contained on a
form of class sfExplorerFormTreeview,
and also contained in a container
of class sfTreeviewExplorer, which
inherits from sfTreeviewCursor and

sfTreeviewContainer. Finally, the timer
is based on class sfTimer.

One thing in Figure 12 might be
a little confusing. When looking at the container
for the timer, why does the list stop with
sfTreeViewContainer? Why doesn’t it go all the
way back to sfContainer, as in Figure 11. The Edit
Parent Class and Containing Classes tool opens
this form to let you jump around among the classes

Figure 8 . A pop-up menu has been defi ned, containing the two tools related to control
structures.

Figure 9. When you use the shortcut for the pop-up menu, it
appears at the mouse position.

Figure 10. The Object Inspector is based on Doug Hennig’s Explorer forms. Here, the
sfTreeviewExplorer container object is selected.

Figure 11. The Edit Parent Class and Containing Classes tool
opens this form to let you jump around among the classes in an
object’s heritage.

November 2012 FoxRockX Page 5

in an object’s heritage. The answer is that the
tool doesn’t trace the inheritance hierarchy for
containing classes. What it does is show you
every class in that hierarchy that contains the
specifi ed object. So, in this example, sfContainer
doesn’t include the timer; it was added to
sfTreeviewContainer, and then inherited by
that class’s subclasses, sfTreeviewCursor and
sfTreeviewExplorer.

As the instructions at the top of the form
indicate, before I can open any of those classes, I
have to close the Inspector form. But then, I can
choose a class and click Modify Selected Class to
open it. Once I’ve fi nished editing and closed the
Class Designer, I can click Return to Original to
reopen the Inspector form exactly as I left it.

Create Local s
Menu: Code | Create LOCALs
I’ve always known that declaring all the variables
used in a routine is a best practice, and since Fox-
Pro morphed into VFP, that declaring all variables
local is the best choice. But the importance of the
declarations was really brought home to me by
one project. It involved a VFP application that
provided a user interface, but also instantiated a
VFP COM object. The COM object had a timer,
and when the timer fi red, the COM object could
call methods of the main application’s application
object. Of course, those calls interrupted whatever
was going on in the main application.

While testing this code, we ran into some
very weird errors with code working most of
the time, but every so often, behaving quite
strangely. Eventually, we realized that many
of the problems were due to having undeclared
variables (which, by default, are private rather
than local). The routines called by the timer
code used some of the same variable names,
and when the variables weren’t local, actually
changed the values of the variables in the rou-
tine that was interrupted by the timer. Once we
ensured that every variable in every method
was declared local, many of the problems went
away.

If only I’d had Thor back then. Thor’s Create
Locals tool takes any code editing window and
adds the necessary local declarations. Figure 13
shows a little block of code (that dumps the list of
forms in a project into a cursor); it uses several vari-
ables, but none of them are declared.

Figure 14 shows the same block of code after
running the Create Locals tool; the arrow points to
the local declarations.

You can control some aspects of this tool’s behav-
ior using the Options tab of the Thor Confi guration
tool.

Figure 12. This time, one of the timers inside the
sfTreeviewExplorer was selected when this tool was run.

Figure 13. Th is block of code uses several undeclared variables.

Figure 14. Aft er running the Create Locals tool, the same block has
variable declarations.

Page 6 FoxRockX November 2012

Figure 15 shows the Options tab with settings
for Create Locals displayed, and Figure 16 shows
the choices in the Selection of variables dropdown.
That dropdown lets you indicate whether all vari-
ables should be declared or only those whose
names begin with a lowercase “l,” the prefi x used
for local variables in the Hungarian naming con-
vention. Since I use a different naming convention
(prefi xing variables with their type, but not with
“l”), I prefer the “All variables, merged” option.

Most of the other choices should be self-explan-
atory, or easily understood with a little testing. The
last checkbox, Create LOCALs as part of BeautifyX,
determines whether local declarations are added
when using the BeautifyX tool, which is a replace-
ment for VFP’s native Beautify.

If, even after trying different settings, you don’t
like the way the local declarations are created, Thor
offers you the ultimate fl exibility. You can create your
own version of the code for the tool. To do so, choose
More | Manage Plug-Ins from the Thor menu. In
the form that appears, fi nd CreateLocalsStatements
and click the Create button next to it. That opens a
program containing the current code used to actually
create the local declarations. You can modify it and
save it (it’s automatically stored in the right place),
and from then on, the tool will use your modifi ed
version.

Add MDots to var iable names
Menu: Code | MDots | Add MDots to variable
names
As with declaring all variables local, I’ve known for
years that all accesses of a variable should be pre-
ceded by “m.” (often written as “MDot”) to ensure
that VFP looks at the variable rather than at a fi eld
of the same name. In fact, increasingly, I remember
to put them in my code, but I still forget sometimes.
This Thor tool catches all the places I missed.

Figure 17 shows a block of code that
doesn’t use the MDot notation. Figure 18
shows the same code after using this tool.
A couple of the changes have been circled.

By default, this tool adds MDots a few
places where they’re not necessary, such as on
the left-hand side of assignment statements.
However, you can control this behavior using
the Options tab of the Thor Confi guration
form, shown in Figure 19. Figure 20 shows
the same block of code when using the tool as
confi gured in Figure 19.

Figure 15. This page lets you determine how the Create
Locals tool behaves.

Figure 16. Creat e Locals can apply to only a subset of
variables, based on their names.

Figure 17. This c ode doesn’t use the MDOT notation to prevent
confl icts between variables and fi eld names.

Figure 18. After u sing the Add MDot to variable names tool, the
code from Figure 17 has “m.” before all references to variables.

November 2012 FoxRockX Page 7

Highlight Parentheses
Menu: Code | Highlighting text | Highlight paren-
theses
This is another tool that’s especially handy when
I’m exploring code written by someone else or old
code I haven’t seen in a while. It’s also great for
those times when I‘m getting a syntax error and
can’t see what’s wrong. When you run this tool, it
looks both ways from the cursor position to fi nd
a matching pair of parentheses and highlights the
matching parentheses and all the code in between.
Figure 21 shows a line of code with nested paren-
theses; the cursor is inside the inner block. Figure
22 shows the same block after using the tool.

Like Highlight Control Structure, using
this tool repeatedly moves outward; Figure
23 shows the same block of code after using
the tool twice. Oddly, if there are no more
pairs of parentheses containing the high-
lighted code, the tool highlights all the code
in the editing window.

Highlight parentheses is smart enough
to get things right when the matching pair
of parentheses contains other parentheses.
For example, in Figure 24, the cursor is
positioned on the FIELD() function, but not
inside its parentheses. Figure 25 shows the
result of using the tool. The correct pairing
is found.

More to come
In my next article, I’ll look at some more Thor tools,
including several that make refactoring easier.

Author Profi le
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books including
the award winning Hacker’s Guide to Visual FoxPro, Microsoft
Offi ce Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open Source
Treasure for the VFP Developer. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference. In
2007, Tamar received the Visual FoxPro Community Lifetime
Achievement Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

Figure 19. Thor off ers options for various tools. Here, you can deter-
mine whether the Add MDots tool uses lower-case or upper-case and
whether it puts MDots in front of all uses of variables or only those
where it’s required to avoid confl ict with fi eld names.

Figure 20. After cha nging the option to include MDots only
where required, variables on the left-hand side of an assign-
ment statement no longer get the MDot prefi x.

Figure 21. The cursor here is inside parentheses.

Figure 22. Highlight p arentheses fi nds the fi rst containing pair
of parentheses and highlights the contained code.

Figure 23. Each subsequ ent use of Highlight parentheses
moves out by one pair of parentheses.

Figure 24. Here, the cur sor’s initial position isn’t in the inner-
most pair of parentheses.

Figure 25. The Highlight parentheses tool gets it right, even
when the initial cursor position isn’t inside the innermost paren-
theses.

